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ABSTRACT 

Mind wandering (MW) is a ubiquitous phenomenon characterized 

by an unintentional shift in attention from task-related to task-

unrelated thoughts. MW is frequent during learning and 

negatively correlates with learning outcomes. Therefore, the next 

generation of intelligent learning technologies should benefit from 

mechanisms that detect and combat MW. As an initial step in this 

direction, we used eye-gaze and contextual information (e.g., time 

into session) to build an automated MW detector as students 

interact with GuruTutor – an intelligent tutoring system (ITS) for 

biology. Students self-reported MW by responding to 

pseudorandom thought-probes during the tutoring session while a 

consumer-grade eye tracker monitored their eye movements. We 

used supervised machine learning techniques to discriminate 

between positive and negative responses to the probes in a 

student-independent fashion. Our best results for detecting MW 

(F1 of 0.49) were obtained with an evolutionary approach to 

develop topologies for neural network classifiers. These 

outperformed standard classifiers (F1 of 0.43 with a Bayes net) 

and a chance baseline (F1 of 0.19). We discuss our results in the 

context of integrating MW detection into an attention-aware 

version of GuruTutor. 
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1. INTRODUCTION 
It is safe to say that most of us have had the experience of reading 

a text or listening to a lecture and then suddenly realizing that our 

thoughts have drifted to completely unrelated things, such as an 

upcoming vacation. This phenomenon, known as mind wandering 

(MW), refers to the unintentional shift of attention away from the 

current task towards internal task-unrelated thoughts [32]. MW is 

a ubiquitous phenomenon, estimated to occur as much as 50% of 

the time depending on the individual, task, and environment [16]. 

Not only does MW occur frequently, it can have detrimental 

influences on performance, especially during educational 

activities. Indeed, a recent meta-analysis  revealed a negative 

correlation between MW and performance across a variety of 

tasks, such as lower recall in memory tasks and poor 

comprehension in reading tasks [24]. It is prudent to point out that 

MW is not always harmful and the tendency to day-dream has 

been shown to aid in certain types of tasks, such as creative 

problem solving [20]. However, research consistently shows that 

MW impairs performance in tasks requiring concentrated 

attentional focus and integration of information from the external 

environment as is the case with many learning activities [21].  

Considering the negative influence of mind wandering on learning 

[27, 29, 30], it is important to take steps towards developing 

intelligent systems that help reorient attention to assuage the 

negative effects of MW. This requires  an ability to monitor the 

locus of attention, detect students’ current attentional state, and 

provide a stimulus to direct focus back to the learning task [10].  

Detecting MW is no easy task however. Although MW is related 

to other forms of disengagement, such as boredom, behavioral 

disengagement, and off-task behaviors [1, 2, 9, 18, 36], it is 

inherently distinct because it involves internal thoughts rather than 

overt expressive behaviors. This raises two challenges. First, 

while other disengaged behaviors often involve detectable 

behavioral markers (e.g., yawns signaling boredom), mind 

wandering is an internal state that can look similar to on-task 

states. Secondly, the onset and duration of MW cannot be 

precisely measured because MW can occur outside of conscious 

awareness.  

Despite these challenges, there has been some progress toward 

automatic detection of mind wandering during reading (discussed 

as related works in Section 1.1). However, almost all of the 

current MW detectors focus on reading tasks, so their 

effectiveness is unclear during complex interactive tasks, such as 

learning with advanced learning technologies. Here, we explore 

for the first time, automated approaches for MW detection during 

learning with intelligent tutoring systems (ITS). 

1.1 Related Work 
In an early study attempting to detect MW in the context of 

learning [11], students were asked to read a paragraph about 

biology aloud, followed by either self-explanation or 

paraphrasing. Students self-reported how frequently they zoned 

out on a scale from 1 (all the time) to 7 (not at all). A supervised 

machine learning model trained on acoustic-prosodic features to 

classify low (1-3 on the scale) and high (5-7 on the scale) zone 

outs achieved an accuracy of 64%. However, it is unclear whether 

this detector could generalize to new students as the validation 

method did not ensure student-level independence across training 

and testing sets. 

Some researchers have built MW detectors based on information 

readily available in log files collected during the reading (e.g., 

reading time, complexity of the text). For example, [19], 

attempted to classify whether students were MW while reading a  

screen of text using reading behaviors and features of the text, 
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such as text difficulty. They were able to classify MW at 21% 

greater than chance using a leave-one-subject out cross-validation 

method. Similarly, another study [12] also attempted to predict 

MW during reading using textual features, such as word 

familiarity, difficulty, and reading time. However, rather than 

using supervised machine learning, they used a set of researcher-

defined thresholds to ascertain if participants were “mindlessly 

reading” based on difficulty and reading time.  

More recent studies have explored additional techniques to detect 

MW during self-paced computerized reading [5, 7, 12, 19]. In 

these studies, MW was measured via thought probes that occurred 

on pseudo-random screens (i.e. screen of text similar to a page of 

text). Participants responded either “yes” or “no” based on 

whether they were MW at the time of the probe. Supervised 

classification models were trained to discriminate the two 

responses using physiological features (e.g., skin conductance, 

temperature) [7] or eye-gaze [9], achieving accuracies ranging 

from 18% to 23% above chance and validated in a manner that 

generalized to new students. Further, combining the two 

modalities led to a 11% improvement in detection accuracy above 

the best individual modality  [3]. 

Previous attempts to detect MW from eye-gaze are of particular 

relevance to the current paper.  Eye tracking offers a unique 

possibility to automatically detect MW due to well-known 

relationships between visual attention and eye-movements. For 

example, MW has been associated with longer fixation durations 

[26] and more blinking in reading [33]. These and other 

relationships have been leveraged to build MW detectors during 

reading [4, 6] with moderate levels of success. However, it is 

unclear if  these findings and corresponding detectors generalize 

to other activities, particularly activities where eye-gaze does not 

have the predictable patterns found in reading text. 

1.2 Current Study and Novelty 
The primary focus of this paper is to detect MW during learning 

with an ITS called GuruTutor.  Previous work suggests that MW 

occurs, on average, once every two minutes during interactions 

with GuruTutor and is negatively correlated with learning gains 

[17], highlighting the importance of detecting MW in this context. 

There are a number of novel aspects with this work. First, we 

study MW detection in an interactive context– an ITS with 

conversational dialogues and other embedded activities. Detection 

of MW during interactions with an ITS provides additional 

challenges compared to reading. In reading tasks, it is generally 

clear where the reader should be looking if they are engaged in the 

task and the eyes move across the screen in a predictable manner. 

However, in complex environments such as an ITS, there are far 

more paths the eyes may take, resulting in fewer predictable 

patterns, rendering MW detection more difficult.   

Second, GuruTutor includes multiple activities, such as lecturing, 

scaffolded dialogue, concept mapping, and Cloze task completion. 

Each has a different visual layout, level of interactivity, and 

learning goal, presumably engendering different gaze patterns and 

levels of MW. By requiring our MW detector to work across a 

range of activities, we hope to have a solution that will generalize 

to additional learning technologies that may support quite 

different activity types. 

Third, while researchers have typically used standard 

classification algorithms (e.g., Naïve Bayes, decision trees), we 

explore the use of a genetic algorithm (GA) to evolve neural 

networks (both topologies and connection weights) for detecting 

MW.  This approach evolves the weights and topology 

concurrently, thereby implicitly integrating feature selection and 

feature weighting. Further, MW detection suffers from a data-

imbalance problem in that the standard classifiers are skewed 

towards predicting the majority class, which is typically the class 

associated with Not MW. We address this issue by considering 

various GA fitness functions that focus on balancing the precision 

and recall of the minority MW class. 

Fourth, we use a low-cost consumer-grade eye tracker to collect 

gaze data from participants as they interact with Guru. Research 

grade eye trackers can cost upwards of $40,000, so the use of 

affordable equipment (less than $150) increases the scalability of 

the detector for eventual deployment in real world learning 

environments such as computer-enabled classrooms.  

2. DATA COLLECTION 
We adopted a supervised classification approach for MW 

detection, which entailed collection of training and validation 

data. 

2.1 Participants 
Participants were 105 undergraduate students (69.5% female, 

average age 19.14) from a mid-sized, private university in the 

Midwest. Participants received extra credit or course credit for 

participating in the study.  

2.2 GuruTutor 
GuruTutor (Guru) is an ITS designed to teach biology topics 

through collaborative conversations in natural language. It is 

modeled after interactions with expert human tutors [22]. Guru 

engages the student through natural language conversations with 

an animated tutor agent that references a multimedia workspace, 

animating content relevant to the conversation (see Figure 1). 

Students type in responses in a conversational style that Guru 

analyzes using natural language processing. Guru maintains a 

student model which it uses to tailor instruction to individual 

students. Guru has been shown to be effective at promoting 

learning and retention at levels similar to human tutors [22]. 

 

Figure 1. Example of Guru during CGB Phase 

Guru presents biology topics aligned with state curriculum 

standards (e.g., cellular respiration), typically lasting between 15 

to 40 minutes each.  Each topic contains sets of interrelated 

concepts and facts (e.g., proteins help cells regulate functions). 

Guru begins each new topic with a brief preview to introduce it to 

the student, followed by a five phase session that encourages 

students to build and articulate their understanding of the 

concepts.  These five phases are described below.   

Common-Ground-Building Instruction (CGB Instruction).  
Biology lessons often involve specialized terminology that needs 

to be well understood before it is possible to move on to more 

collaborative knowledge building activities. Therefore, Guru 
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begins with a collaborative lecture phase that covers basic 

information and terminology relevant to the topic. Intermittent 

Summaries (Summary). Following CGB, students generate 

summaries using natural-language to describe the content covered. 

These summaries are automatically analyzed to determine which 

concepts to target throughout the remainder of the session. 

Concept Maps. For the target concepts, students complete 

skeleton concept maps, node-link structures that are automatically 

generated from concept text.  Scaffolded Dialogue. Next students 

complete a scaffolded natural language dialogue in which 

GuruTutor uses a Prompt → Feedback → Verification Question 

→ Feedback → Elaboration cycle to cover target concepts. If a 

student shows difficulty mastering particular concepts, a second 

Concept Maps phase is initiated followed by an additional 

Scaffolded Dialogue phase. Cloze Task. The session concludes 

with a cloze task requiring students to complete an ideal summary 

of the topic by filling in blanks to connect key words to related 

concepts.  

 

Figure 2.  Example of Guru during Concept Maps 

2.3 Procedure 
All experimental procedures were reviewed and approved by the 

university’s ethics board. After signing an informed consent, 

participants were seated at a desk in front of a 15-inch laptop. A 

Tobii EyeX eye-tracker was positioned directly under the laptop 

screen using a magnetic strip based on the guidelines provided by 

Tobii. 

Participants were asked to sit comfortably with the chair pulled up 

to the desk. Next, participants were given an explanation of MW 

and were given detailed instructions for how to respond to the 

mind wandering probes (see below) during learning with Guru. 

Specifically, MW was defined as “when you realize that you are 

no longer paying attention to what you’re supposed to be doing, 

for example, instead of thinking about the biology, you may be 

thinking about something else altogether.”   

After receiving initial instructions, a 60 second calibration process 

occurred before beginning the learning session. Participants were 

dynamically instructed about their seating and head position in 

order for the eye tracker to pick up their eye gaze.   

Then, one of six biology topics from Guru was assigned to each 

participant: Interphase, Osmosis, Biochemical Catalysts, 

Carbohydrate Function, Protein Function, or Facilitated Diffusion. 

Following a pretest on the assigned topic, participants began the 

Guru tutoring session. Afterwards, participants completed a 

posttest and were fully debriefed.  

2.4 Mind Wandering Probes 
Mind wandering was measured during learning with Guru using 

auditory thought probes, which is a standard approach in the 

literature [31]. Participants were probed at pseudo-random 

intervals with probes occurring every 90-120 seconds, this was 

based on previous work investigating how often MW occurs[17].  

If the tutor was speaking at the time the probe was triggered, the 

probe was paused until the tutor finished speaking so as to not 

interrupt the conversation flow. Probes consisted of an auditory 

beep that automatically paused the tutoring session. An opaque 

overlay would then appear on screen, instructing the participant to 

press the “N” key if they were not mind wandering, the “I” key if 

they were intentionally (deliberately) mind wandering, or the “U” 

key if they were unintentionally (spontaneously) mind wandering. 

In this study, we do not differentiate between intentional and 

unintentional mind wandering, and “I” and “U” responses were 

coded as “MW” to indicate mind wandering occurred. Participants 

encountered an average of ten probes over the course of the 

session. We obtained a total of 1104 reports to thought probes, 

17% of which corresponded to episodes of MW. 

3. MODEL BUILDING 
Supervised machine learning models were built to detect MW 

using eye-gaze data and contextual information from Guru.  

3.1 Feature Engineering 
We calculated features from a short window of time preceding 

each auditory probe, exploring window sizes ranging from 3 to 30 

seconds.  We did not consider windows shorter than 3 seconds, as 

they most often did not contain sufficient gaze data. We discarded 

windows where not all the eye-gaze features could be computed, 

such as cases when the face was occluded or the student was 

looking down at the keyboard. For the smallest window (three 

seconds) 418 instances were removed, lowering the MW rate to 

15.5%. A total of 156 instances were removed for all other 

window sizes, leaving the average MW rate unaffected (17%).  

Table 1. Eye-gaze  features 

Fixation Duration  duration in milliseconds of fixation 

Saccade Duration  duration in milliseconds of saccade 

Saccade Length distance of saccade 

Saccade Angle Absolute angle in degrees between the x-axis 

and the saccade 

Saccade Angle Relative angle of the saccade relative to 

previous gaze data. 

Saccade Velocity Saccade Length / Saccade Duration 

Fixation Dispersion root mean square of the distances 

from each fixation to the average 

fixation position in the window 

Horizontal Saccade 

Proportion 

proportion of saccades with angles 

no more than 30 degrees above or 

below the horizontal axis 

Fixation Saccade Ratio ratio of Fixation Duration to 

Saccade Duration 

Note. Bolded cell indicates that the total number, mean, median, 

min, max, standard deviation, range, kurtosis, and skew of the 

distribution of each measurement were used as features. 

Gaze Features. Eye movements are measured by fixations (i.e. 

points in which the gaze was maintained on the same location) 

and saccades (i.e. the movement of the eyes between fixations). 

We calculated fixations and saccades from the raw eye-gaze data 

using the Open Gaze and Mouse Analyzer (OGAMA) [35], an 

open source package for eye tracking analysis. Next, gaze  

features were computed for each from the fixations and saccades 

(see Table 1) in that window.  We considered six general 

measures based on fixations and saccades. For these gaze 

measures, we calculated the number, mean, median, min, max, 
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standard deviation, range, kurtosis, and skew of the distributions 

of each measure across the time window, yielding 54 features. We 

also included three other features (listed in Table 1), yielding a 

total of 57 gaze features. 

Contextual Features. The gaze features were complemented with 

eight contextual features that provide a snapshot of the student-

tutor interaction context during each window. One feature was the 

assigned biology topic. A second encoded participants’ pretest 

scores on that topic. The next three of these features describe 

participants’ progress within Guru, such as the current phase of 

the session (e.g., cloze, concept map, etc.), the amount of elapsed 

time into the session, and the amount of elapsed time into the 

current phase. The last three context features focused on 

participants’ overall interaction with Guru, measured by the 

amount of positive, neutral, and negative feedback received.  

3.2 Addressing Class Label Imbalance 
Only 17% of the 1104 thought probes were reports of MW, 

thereby leading to substantial data skew. This imbalance between 

the class labels poses a challenge as some supervised learning 

methods tend to bias predications towards the majority class label. 

To compensate for this concern, synthetic oversampling was 

applied to provide a more balanced class distribution on the 

training set only. The SMOTE algorithm [8] creates synthetic 

instances of the minority class by interpolating feature values 

between an instance and randomly chosen nearest neighbors. No 

SMOTING was done on the testing set in order to ensure validity 

of the predictions.  

3.3 Classification Models 
We evaluated five classifiers frequently explored for the detection 

of MW [6, 7]. These included Bayesian networks, logistic 

regression classifiers, multilayer perceptrons (MLP), random 

forests, and support vector machines (SVM) using 

implementations from the WEKA data mining software [14].   

We also considered a neural network trained using a genetic 

algorithm (GA), which is a type of evolutionary algorithm for 

optimization and search problems that uses techniques loosely 

inspired by biological natural selection. GAs maintain a 

population of candidate solutions (phenotypes), each with a set of 

properties (genotypes).  These individual solutions evolve over 

time guided by a fitness function. At each generation, the fitness 

function is used to rank the candidate solutions, allowing 

elimination of inferior solutions and selection of the best 

candidates to the new generation. New candidate solutions are 

created at each generation through the mechanisms of mutation, a 

pseudo-random perturbation of an individual’s genotype, and 

cross-over, the combination of aspects of the genotypes of 

multiple fit individuals.  

NEAT Algorithm. In this study, we used a GA to evolve an 

artificial neural network for MW detection. We used the 

NeuroEvolution of Augmenting Topologies (NEAT) algorithm to 

evolve the topology of neural network alongside an evolution of 

the network weights [34]. Because NEAT evolves both the 

weights and topology of the network, it must implement the 

genetic operators of mutation and crossover in a unique way to 

handle differences between network topologies. NEAT uses 

population speciation to track individuals with similar topologies, 

restricting crossover to individuals with similar network 

topologies to ensure the resulting new topology is coherent.  

Mutation of the topology occurs in two ways, either by the 

creation of a hidden node or the addition or removal of a link 

between nodes. As the size of the networks may grow larger in 

each new generation, constraints are imposed to penalize large 

networks that exceed a complexity threshold.  

To encourage innovation in new generations, NEAT implements 

speciation by grouping networks that share similar topologies into 

the same population. The populations are determined by a 

distance metric that computes the distance of a topology of an 

individual from the initial topology of the species. New 

populations are created as new networks that are dissimilar from 

any existing population evolve. This strategy allows the 

generation of new individuals by applying genetic operators on 

similar individuals in order to maintain viable network topologies 

without hindering the ability of the GA to develop new and 

unique networks.  

Using NEAT for MW Detection.  We used SharpNeat, a popular 

implementation of the NEAT algorithm in the C# language [28].  

We tuned the evolution variables on our data in preliminary 

experiments. We used a population of 150 individuals and ran the 

algorithm for 500 generations. We also determined a complexity 

threshold to prune overly complex networks.  Because 

evolutionary algorithms are non-deterministic, we ran these 

classifiers over multiple iterations in each experiment.   

The effectiveness of an evolutionary algorithm depends on the 

evaluation of individuals using the fitness function. We 

considered three different fitness functions that were informed by 

[13]. The first function evaluates candidate networks using the 

overall accuracy (recognition rate) of the model. The second 

function evaluates the networks considering the F1 measure for 

the class label of interest, which in our case is MW (denoted as 

F1-MW).  The third evaluates the networks using the Youden’s J-

statistic, (a variation on Cohen’s Kappa, sometimes called 

“informedness” [23]) which is defined as sensitivity + specificity 

– 1 of MW.  

3.4 Cross-Validation 
All experiments were conducted using leave-several-participants-

out cross-validation. For each iteration of the classifier, instances 

from 66% of the participants were assigned to a training set and 

the remaining instances of the other 33% participants were 

assigned to a test set.  This process ensures that no instances of 

any individual participant could appear in both the training and 

test sets within a fold. This process was repeated for 15 folds, and 

the results accumulated. We selected 15 iterations in order to 

balance time taken to build the models (as evolutionary 

approaches are slow) and reliability by testing multiple 

training/testing set pairs. Minority oversampling (SMOTING) 

occurred within each fold and on the training set only.  

4. RESULTS 
We report the F1 measure in our evaluation of our results.  This 

measure is common in information retrieval tasks and provides a 

balance between precision and recall.  Because our intention is to 

detect instance of MW, we focus on the F1 score of the MW label 

as our key metric. This is a very strict evaluation criterion as the 

base rate of MW is only 17% in our data. To facilitate 

comparisons with previous (and future work), we also reported the 

F1 score for the majority Not MW class (83% of instances), as 

well as the weighted F1 score. 

4.1 Comparing Window Size 
In our first experiment, we explored the influence of various 

window sizes ranging from 3 to 30 seconds. As we are interested 
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in general trends, we average results of the five standard 

classifiers and the three NEAT classifiers. (see Figure 3). These 

results illustrate a general trend of improved performance for the 

larger windows, although these differences may not be overly 

large. In the remainder of this work, we considered a 30 second 

window in our experiments as it generally resulted in the highest 

F1 scores.  

 

Figure 3. Comparison of different window sizes. 

4.2 Comparison of Classifiers 
In Table 3 we report the results of the classifiers considering a 30 

second analysis window, informed by our experiment in Section 

4.1.  The highest F1 for MW is denoted in bold for both the 

common classifiers and NEAT implementations that varied by 

fitness function. For comparison, a chance-level baseline was 

created by randomly assigning a class label to each instance based 

on the observed MW rate of 17%. We note that all of the 

classifiers showed an improvement in detecting the target 

minority class of MW over the chance model. 
 

Table 2. MW detection results by classifier for 30 second 

window 

  F1 of 

MW 

F1 of  

Not MW 

Overall 

F1 

Standard Classifiers    

 Bayesian Network 0.43 0.73 0.68 

 Logistic 

Regression 

0.38 0.79 0.72 

 MLP 0.30 0.83 0.74 

 SVM 0.37 0.76 0.70 

 Random Forest 0.23 0.86 0.75 

     
NEAT Classifiers    

 Fitness: Accuracy  0.36 0.76 0.69 

 Fitness: F1-MW  0.49 0.58 0.57 

 Fitness: Youden J  0.44 0.69 0.65 

     

Baseline  0.19 0.83 0.73 

 

Among the common classifiers, Bayesian network achieved the 

highest F1 score for MW. This was also the case in previous MW 

eye-gaze detectors in other domains [6].  The overall F1 score for 

the Bayesian network was lower than for other classifiers, 

ostensibly because the other classifiers tend to over predict the 

majority class. For NEAT, using the F1-MW score as the fitness 

function resulted in the overall best F1 score for MW. NEAT with 

Youden’s J- statistic as the fitness function did yield a slightly 

more balanced detector with an increase in F1 of Not MW. 

Importantly, the best NEAT classifier outperformed the Bayesian 

network at detecting MW, which is our target class of interest. In 

Table 3 we show the confusion matrices for the three classifiers 

that obtained the highest F1 score for MW: the Bayesian network, 

NEAT-F1-MW, and NEAT-Youden. NEAT-F1-MW yielded a 

substantially higher hit rate than the other two classifiers, but also 

suffered from a high false positive (FP) rate.  The Bayesian 

network and  NEAT-Youden had similar patterns of errors in that 

they had both lower hit rates as well as FP rates. Based on these 

results, we consider NEAT-F1-MW and the Bayesian network in 

subsequent analyses. 

Table 3. Confusion matrices for the three best classifiers 

Actual Predicted 

Bayes Net MW Not MW 

MW 0.52 (hit) 0.48 (miss) 

Not MW 0.34 (false pos.) 0.66 (correct rej.) 

   

NEAT-F1-MW MW Not MW 

MW 0.69 (hit) 0.31 (miss) 

Not MW 0.54 (false pos.) 0.46 (correct rej.) 

   

NEAT-Youden MW Not MW 

MW 0.55 (hit) 0.45 (miss) 

Not MW 0.41(false pos.) 0.59 (correct rej.) 

4.3 Gaze only vs. Gaze + Context Features 
We investigated the utility of contextual features over the gaze 

features alone (see Table 4). The addition of contextual features 

improved the F1 score for the minority class of MW for NEAT 

and correspondingly for the majority Not MW class for the 

Bayesian network. Overall, the improvements in performance 

were small, suggesting that the gaze features were more important 

to the detection of MW compared to the contextual features.  

Table 4. Gaze (G) vs. Gaze + Context (G+C) features 

Classifier Feature 
F1 of 

MW 

F1 of  

Not MW 

Overall 

F1 

Bayesian network G 0.45 0.69 0.65 

 G+C 0.43 0.73 0.68 

     

NEAT-F1-MW G 0.44 0.58 0.56 

 G+C 0.49 0.58 0.57 

 

4.4 Oversampling vs. No Oversampling 
In Section 3.2, we discussed the imbalance between instances of 

MW and Not MW in the dataset, and addressed this difficulty by 

supplementing the training data with the SMOTE oversampling 

technique. To study the effect of SMOTE, we compared the 

Bayesian network and the best NEAT classifier on datasets with 

and without these synthetic training instances (see Table 5). We 

confirmed that synthetic oversampling indeed improved the 

classification of the MW (the minority class) for NEAT at the cost 

of detecting the majority class. Thus, SMOTING played a critical 

role in reducing the tendency to over predict to the majority class. 

SMOTING had no notable effect for the Bayesian network, which 

seemed to be more impervious to data skew. 
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Table 5. Results with and without oversampling. 

 Classifier SMOTE 
F1  

of MW 

F1 of 

Not MW 

Ove all  

F1 

Bayesian net No 0.41 0.75 0.70 

 Yes 0.43 0.73 0.68 

     

NEAT-F1-MW No 0.42 0.75 0.79 

 Yes 0.49 0.58 0.57 

4.5 Analysis of Features 
Neural networks use a mathematical approach to transform and 

combine input features to useful output. Thus, we can learn more 

about the structure of our MW detector by investigating the 

topologies formed during the evolutionary process. For example, a 

network with a densely connected hidden layer would be 

performing a large amount of internal calculations compared a 

sparsely connected layer. 

To better understand our MW detector’s structure, we examined 

each of the 15 iterations of the NEAT-F1-MW model and 

investigated the networks that survived to the final generation in 

each case.  Across the networks the mean number of hidden nodes 

in the network is 1.6 (min 0, max 3), the average number of inputs 

actually used in the final network is 17.133 (min 8, max 36) and 

the average number of connections is 21.46 (min 9, max 44). The 

number of hidden nodes here is low, but considering the large 

number of inputs to a small number of outputs, this is to be 

expected. The algorithm also biases towards smaller networks to 

avoid bloat. 

Developing neural network topologies also provides inherent 

feature selection that takes place as the network structures evolve 

to subsequent generations. This provides an opportunity to 

explore which features were most useful in detecting MW. Seven 

features appeared in at least half of the final networks as shown in 

Table 6. 

Table 6. Cohen's d of most commonly used features 

Feature Cohen’s d 

Fixation Duration Skew -0.27 

Minimum Fixation Duration 0.17 

Mean Saccade Duration 0.32 

Saccade Duration Kurtosis -0.16 

Saccade Duration Skew -0.17 

Minimum Saccade Velocity -0.15 

Fixation to Saccade Ratio -0.17 

Pre Test Score -0.18 

We compared these seven features across the MW and not MW 

instances using an effect size measure (Cohen’s d).  An effect size 

measure is appropriate for this comparison in order to evaluate the 

direction and magnitude of the differences between the two 

classes. Positive values depict higher values for instances of MW 

(see Table 6). In general, the differences reported in this paper are 

consistent with previous work examining eye gaze surrounding 

MW episodes during reading [4]. Two of the seven features had 

differences across the MW and not MW classes consistent with 

small effect sizes (|d| > .2). The largest difference was seen for 

mean saccade duration (d = .32). This finding suggests that 

participants tend to have longer gaps between fixations leading up 

to a MW episode as opposed to more rapid eye movements 

between fixations. A similar effect size was found for fixation 

duration skew (d = -.27), which suggests that there is a higher 

probability that participants would have shorter fixations before a 

MW episode occurs compared to when their attention is on task.  

It is important to point out that the low Cohen’s d values (< |.2|) 

are not entirely surprising given the nature of neural networks. 

The network employs a combination of features and the 

combination sets that prove to be most effective for MW detection 

may not be consistent with the overall largest mean differences. 

Instead, the important thing to note is that these seven features 

were the most consistent across all iterations. 

It is also worth mentioning that only one context feature was 

present in over half of the final networks: pre-test score. Instances 

of MW were associated with lower pre-test scores, indicating that 

when participants were more likely to mind wander if they did not 

understand the topic well to begin with.  

5. GENERAL DISCUSSION 
Mind wandering occurs frequently during learning and has a 

negative impact on learning outcomes [21]. An attention-aware 

learning technology [10] that can automatically detect MW could 

intervene to re-engage learners, assuaging the cost of MW on 

comprehension to improve learning. However, MW is a covert, 

internal state with no obvious behavioral markers, making it 

difficult to detect. Although strides have been made to detect MW 

in the context of self-paced reading, MW detection has not yet 

been attempted in the context of an ITS – a challenge we 

addressed in the current paper. In the remainder of this section, we 

discuss our main findings, consider potential applications, and 

discuss limitations and future work. 

5.1 Main Findings 
MW detection during reading tasks is supported by decades of 

research on MW and eye movements [25]. However, more 

complex learning interfaces, such as the ITS used here, are not 

afforded such predictable patterns of eye movements. Despite 

these challenges, we demonstrated the ability of a neural network 

trained using a GA to detect MW in the context of learning with 

an ITS. We were able to accurately classify MW with an F1 of 

0.49 at detecting the minority MW class. Although this result is 

modest, it is an important first step in detecting MW in this novel 

domain.  

In most machine learning tasks, a large imbalance in the 

distribution of class labels results in a degraded performance at 

predicting the minority class label [15]. This is a major issue for 

MW detection as its rate of occurrence is around 20% to 40% in 

learning contexts [27] and in our case it was 17%.  We addressed 

the data imbalance by using a synthetic oversampling technique 

and by tweaking the fitness function of the GA in order to help the 

classifiers in detecting the minority class of MW. We believe that 

this combined approach might be beneficial for other 

classification problems when there is severe data skew. 

Since MW detection in the context of learning from an ITS is still 

in its infancy, it was important for us to adopt a method that will 

generalizable for future work in this area. The eye gaze feature set 

was limited to eye movements that were independent of the 

specific content being displayed on the screen. This enabled our 

models to operate across Guru’s multiple instructional activities, 

each with very different visual displays.  

In addition to the gaze features, a second set of features included 

the context of the learning session. A comparison of model 

performance with and without contextual features revealed that 

contextual features added a small, but not substantial, 

improvement in detection accuracy. This finding further illustrates 

the idea that eye gaze can be a powerful signal of attention, 

regardless of the learning context.   
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An analysis of the most consistent features in the model point to 

seven important features, six of which are gaze features. MW 

episodes had a longer mean saccade duration, yet smaller fixation 

duration skew. The longer mean saccade duration preceding MW 

is consistent with prior research, which suggests that MW signals  

a breakdown at very basic levels of perceptual processing [30]  – 

in this case, being slower to direct your eyes form one point to 

another. Most of the effect sizes (d’s) reported are objectively 

small effects; however, we feel that obtaining a sense of 

consistent features and how the relate to MW is a major 

contribution at this stage in the of MW detection. 

All data was collected using low-cost, consumer-grade eye 

trackers (less than $150). This is a marked contrast compared to 

many research-grade trackers that can cost tens of thousands of 

dollars. Our goal is eventual deployment of our models at scale, 

thereby allowing us to test generalizability in more diverse 

contexts. For this reason, it was important to ensure that our 

models were validated in a student-independent manner, which 

increases our models’ ability to generalize to new students. Taken 

together, these results increase our confidence that the models will 

generalize more broadly, though this claim requires further 

empirical validation. 

5.2 Applications 
The key application of this work is to develop an attention-aware 

version of Guru that detects and combats MW in real-time. Once 

the goal of MW detection is realized, Guru has a number of paths 

to pursue to re-engage attention. 

At an immediate level, one initial effect of MW is that the student 

simply fails to attend to a unit of information or a salient event in 

the learning environment. The unattended information, question, 

or event is needed to construct an adequate mental model so that 

subsequent knowledge can be assimilated or the student will be 

left behind. Thus, a simple direct approach is to reassert the 

missed information (“e.g., Mary, let me repeat that…..”) or 

highlight the information by directing attention to specific areas of 

the display (e.g., “Mary, you might want to look at the highlighted 

image showing the chromosomes duplicating”). Taking a 

somewhat different approach, Guru can also launch a sub-

dialogue where it asks a content-specific question (e.g., “Mary, 

what happens to the chromosomes when they duplicate”) or asks 

the student to complete a mini-activity (e.g., “Mary, we now have 

a simulation of the first phase in mitosis. Can you….”). Guru can 

also ask the student to self-explain when MW is detected. 

Additional measures might be needed if MW persists despite 

these intervention strategies. One option is to simply change to a 

new activity. Guru might even suggest changing topics or offering 

a choice for what students would like to do next. If all else fails, 

Guru might even suggest that the student take a break.  

It is important to note that the proposed intervention strategies 

rely on MW detection, which is inherently imperfect. The detector 

might inaccurately assert that a student is MW when they are not 

(false alarms) or it might assert that a student is actively attending 

when they are in fact MW (misses). MW detection does not need 

to be perfect as long as we account for this in MW interventions. 

For example, Guru can adopt a probabilistic approach where the 

MW detector provides an estimate of the likelihood that the 

student is MW. This likelihood will guide whether an intervention 

is launched (i.e. if the likelihood of MW is 70%, there is a 70% 

chance that an intervention will be triggered). Second, 

interventions can be designed to be “fail-soft” in that there are no 

harmful effects if delivered incorrectly.  

5.3 Limitations and Future Work 
There were several limitations with this study.  One key limitation 

pertains to the moderate MW detection accuracy. Although, we 

detected MW above chance levels using several different 

classifiers, these results leave room for improvement.  Ongoing 

work seeks to reduce the false positive rate while increasing the 

hit rate for our MW models by expanding our feature set and 

incorporating temporal information in the machine learning.   

We designed our approach to include a low-cost eye tracker, 

however, these consumer models have a lower sampling-rate, 

limiting the accuracy of the eye-gaze data compared to research-

grade eye trackers.  Furthermore, although we desire to eventually 

deploy our system in noisy classroom environments, we only 

tested our system in a quiet lab setting.  

This work is also limited by the features used in the supervised 

learning process, which were a small and potentially restrictive 

subset of gaze features.  We also did not model temporal patterns 

of eye movements, such as examining if the participant revisited 

an area of the screen they had previously viewed. Additionally, 

we only used a small number of contextual features. Future work 

may consider a utilizing log files from the tutoring session more 

extensively to create more in-depth context features (e.g., content, 

timing, and length of student responses, etc.). 

The results of this study invite several avenues for improvement 

which we will explore as future work.  First, we will explore 

additional eye-gaze features, such as those that track localized 

regions of interest but at a level of abstraction that does not limit 

generalizability to additional interfaces. Informed by our 

observation that the inclusion of contextual features improved 

detection of MW, we will explore additional contextual features 

from the ITS, again with an eye for more generalizable features 

(e.g., response time).  Furthermore, it is possible to build multiple 

MW detector specialized for different phases in the Guru tutoring 

sessions, although this would require a large amount of data and 

would make these detectors less able to generalize to other ITSs. 

Finally, we will collect data in the real-world context of a 

computer-enabled classroom where 20-30 students interact with 

Guru on individual computers while their gaze is being tracked. 

Indeed, preliminary data collection on this front is already 

underway. 

5.4 Concluding Remarks 
Attention is a crucial part of learning. An attention-aware ITS that 

can detect a student’s attentional state as well as redirect their 

attention to better engage them in the learning task could be very 

beneficial for engagement and learning. Attention-awareness, 

however, requires monitoring of attention, which has historically 

been limited to the lab. However, advances in consumer-grade 

eye-tracking have opened up the possibility of gaze tracking 

during learning with ITSs and other technologies, thereby 

enabling a new generation of attention-aware cyberlearning. 
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